- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000000010000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Daley, M (1)
-
De_Comite, A (1)
-
Seethapathi, N (1)
-
Voloshina, A (1)
-
Wang, W_C (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Everyday locomotion is a complex sensorimotor process that can unfold over multiple timescales, from long-term path planning to rapid, reactive adjustments. However, we lack an understanding of how factors such as environmental demands, or the available sensory information simultaneously influence these control timescales. To address this, we present a unified data-driven framework to quantify the control timescales by identifying how early we can predict future actions from past inputs. We apply this framework across tasks including walking and running, environmental contexts including treadmill, overground, and varied terrains, and sensory input modalities including gaze fixations and body states. We find that deep neural network architectures that effectively handle long-range dependencies, specifically Gated Recurrent Units and Transformers, outperform other architectures and widely used linear models when predicting future actions. Our framework reveals the factors that influence locomotor foot placement control timescales. Across environmental contexts, we discover that humans rely more on fast timescale control in more complex terrain. Across input modalities, we find a hierarchy of control timescales where gaze predicts foot placement before full-body states, which predict before center-of-mass states. Our model also identifies mid-swing as a critical phase when the swing foot's state predicts its future placement, with this timescale adapting across environments. Overall, this work offers data-driven insights into locomotor control in everyday settings, offering models that can be integrated with rehabilitation technologies and movement simulations to improve their applicability in everyday settings.more » « lessFree, publicly-accessible full text available August 27, 2026
An official website of the United States government
